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This semester, | worked through a couple of the later chapters in
Number Theory and Geometry by Alvaro Lozano-Robledo.

This presentation will focus on content from “Chapter 12: Circles,
Ellipses, and The Sum of Two Squares Problem”.



Main Question

When can an integer be written as the sum of
two squares?



There are plenty of reasons we may want to know when an integer
is a sum of two squares. This problem has applications relating to
finding Pythagorean triples and lattice points on a plane.
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There are plenty of reasons we may want to know when an integer
is a sum of two squares. This problem has applications relating to
finding Pythagorean triples and lattice points on a plane.

The problem of determining if an integer is a sum of two squares is
equivalent to determining if a circle with integer radius has integral
points.

Less obviously, this turns out to be equivalent to determining if a
circle has rational points.



Background

An explanation of some useful notation and
terminology.



Integral and Rational Points

An integral or rational point on a curve C is a point (x,y) € C
such that x,y € Z or x,y € Q, respectively.



Integral and Rational Points

An integral or rational point on a curve C is a point (x,y) € C
such that x,y € Z or x,y € Q, respectively.

Example of an Integral Point

The circle Cos : x? + y? = 25 has an integral point at (3,4).



Integer Congruence

Two integers a, b are congruent mod n (denoted a = b mod n) if
a — b = nm for some integer n.

Integers that are congruent mod n have the same remainder when
divided by n.
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Two integers a, b are congruent mod n (denoted a = b mod n) if
a — b = nm for some integer n.

Integers that are congruent mod n have the same remainder when
divided by n.

Example

We can see that 13 =5 mod 8 and 9 = 2 mod 7.
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Quadratic Residue

An integer g is a quadratic residue mod n if ¢ = x> mod n for
some integer x.

Example

The numbers 0, 1, and 4 are the quadratic residues mod 5, since
0=0%2mod5, 1=1%=4%mod5 and 4 = 22 = 82 mod 5.

The numbers 2, 3 are quadratic non-residues mod 5, because there
do not exist x € Z such that x> = 2,3 mod 5.



Legendre Symbol

Let p > 2 be an odd prime and let a be an integer. The Legendre
Symbol is defined as follows:

0 if p|a,
a
<> =<1 if a is a quadratic residue mod p,
—1 if ais a quadratic non-residue mod p.



Legendre Symbol

Let p > 2 be an odd prime and let a be an integer. The Legendre
Symbol is defined as follows:

0 if p|a,
a
<p> =<1 if a is a quadratic residue mod p,
—1 if ais a quadratic non-residue mod p.
Example

From the previous example, since 4 is a quadratic residue mod 5, it
follows that (%) =1.
Since 2 is a quadratic non-residue mod 5, it follows that (£) = —1.



Preliminary Results

We will need to see some lemmas and
preliminary results that will be used in main
result.



Lemma 10.3.4

Lemma (10.3.4)

Let p > 2 be a prime and let a, b € Z relatively prime to p. Then
1. <%) = (%) In particular <b§) =1
_ a\ _ (b
2. If a= b mod p, then (5) = (5)'
3. (2) = ()2,



Lemma 12.1.7

Lemma (12.1.7)

Let m, n be integers such that m = a® + b®> and n = ¢ + d?, for
some a, b, c,d € Z. Then we have,

mn = (ac + bd)? + (ad — bc)? = (ac — bd)? + (ad + bc)?.
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Lemma (12.1.7)

Let m, n be integers such that m = a® + b®> and n = ¢ + d?, for
some a, b, c,d € Z. Then we have,

mn = (ac + bd)? + (ad — bc)? = (ac — bd)? + (ad + bc)?.

Numerical Example

Take 25 = 32 + 42 and 13 = 22 + 32, then

325 = (25)(13) = (3-2+4-3)>+ (3-3—4-2)> =182 +12.



Lemma 12.1.9

Lemma (12.1.9)

Let n be an integer such that n = a®> + b® for some a, b € Z, and
suppose q is a prime such that g = 3 mod 4.

1. Ifq|n, then q| aand q | b. In particular, g* | n.

2. If g | n, then q appears to an even power in the prime
factorization of n.
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Theorem 12.1.5

Theorem (12.1.5)

An odd prime p is a sum of two squares if and only if p = 1 mod 4.
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Theorem (12.1.5)

An odd prime p is a sum of two squares if and only if p = 1 mod 4.

Proof (=): Suppose p is an odd prime such that p = a® + b? for
some a, b € 7.
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Theorem (12.1.5)

An odd prime p is a sum of two squares if and only if p = 1 mod 4.

Proof (=): Suppose p is an odd prime such that p = a® + b? for
some a, b € 7.

Notice that gcd(ab, p) = 1. If p| a, then p | (p — a%) = b?, so
p | b which would imply p? | (a®> + b?) = p a contradiction.
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Theorem 12.1.5

Theorem (12.1.5)

An odd prime p is a sum of two squares if and only if p = 1 mod 4.

Proof (=): Suppose p is an odd prime such that p = a® + b? for
some a,b € Z.

Notice that gcd(ab, p) = 1. If p| a, then p | (p — a%) = b?, so
p | b which would imply p? | (a®> + b?) = p a contradiction.

We have that a and b are units mod p, and therefore invertible.

Recall that a®> + b?> = 0 mod p, so a®> = —b? mod p. It follows
then that (ab™1)? = —1 mod p.

Therefore, —1 is a square mod p, and by Lemma 10.3.4, we know
(p—1)/2is even. Thus, p =1 mod 4.
O
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Proof of Theorem 12.1.5 Continued...

Proof (<): Assume that p = 1 mod 4, so Lemma 10.3.4 shows
—1 is a square mod p for some s € Z such that s> = —1 mod p.
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Proof of Theorem 12.1.5 Continued...

Proof (<): Assume that p = 1 mod 4, so Lemma 10.3.4 shows
—1 is a square mod p for some s € Z such that s> = —1 mod p.

Let |/p] be the floor of \/p, and consider the set of integers

S={(xy):0<xy < [VBl}.

We claim that there are two distinct pairs (x1,y1) and (x2,y2) in S
such that sx; — y1 = sxo — y» mod p.
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Proof of Theorem 12.1.5 Continued...

Proof (<): Assume that p = 1 mod 4, so Lemma 10.3.4 shows
—1 is a square mod p for some s € Z such that s> = —1 mod p.

Let |/p] be the floor of \/p, and consider the set of integers

S={(xy):0<xy < [VBl}.

We claim that there are two distinct pairs (x1,y1) and (x2,y2) in S
such that sx; — y1 = sxo — y» mod p.

If all possible values of sx — y for (x,y) € S were distinct mod p,
then there would be (|,/p] + 1)? distinct values mod p in S, but

(VB +1)? > (V) = p.
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Proof of Theorem 12.1.5 Continued...

Proof continued: Since there are exactly p distinct values in the
set of representatives mod p, this is a contradiction.

Therefore, there must be two distinct pairs (x1, y1) and (x2, y2)
such that sx; — y1 = sx0 — yo.

Equivalently, we can say that sxg = yp mod p where xp = x; — x»
and yp = y1 — y2. Since (x1,y1) # (x2,¥2), we know that at most
one of xg or yp must be non-zero.

It follows from sxg = yg that szxg = yo, and therefore we have

—xg=ygmodp = xZ+yi=0modp.
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Proof continued: Since there are exactly p distinct values in the
set of representatives mod p, this is a contradiction.

Therefore, there must be two distinct pairs (x1, y1) and (x2, y2)
such that sx; — y1 = sx0 — yo.

Equivalently, we can say that sxg = yp mod p where xp = x; — x»
and yp = y1 — y2. Since (x1,y1) # (x2,¥2), we know that at most
one of xg or yp must be non-zero.

It follows from sxg = yg that szxg = yo, and therefore we have

—xg=ygmodp = xZ+yi=0modp.
Thus, Xg +y§ is some non-zero integer multiple of p, and

0 <x§ +5 < (Lvp))* + (LvP))? = 2(Lvp))* < 2(v/P)* = 2p.
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Proof of Theorem 12.1.5 Continued...

Proof continued: Since there are exactly p distinct values in the
set of representatives mod p, this is a contradiction.

Therefore, there must be two distinct pairs (x1, y1) and (x2, y2)
such that sx; — y1 = sx0 — yo.

Equivalently, we can say that sxg = yp mod p where xp = x; — x»
and yp = y1 — y2. Since (x1,y1) # (x2,¥2), we know that at most
one of xg or yp must be non-zero.

It follows from sxg = yg that szxg = yo, and therefore we have

—xg=ygmodp = xZ+yi=0modp.
Thus, Xg +y§ is some non-zero integer multiple of p, and

0 <x§ +5 < (Lvp))* + (LvP))? = 2(Lvp))* < 2(v/P)* = 2p.

There is one multiple of p strictly between 0 and 2p. Therefore,
x5+ y2 = p, so p is a sum of two squares.
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Main Result




Main Result

Theorem (12.1.10)

Let n > 1 be a natural number. The circle C, : x> + y?> = n has an
integral point if and only if every prime divisor p of n with

p = 3 mod 4 appears to an even power in the prime factorization
of n.

Equivalently, n can be be written as a sum of two squares if and

only if the square-free part of n is not divisible by any prime p of
the form p = 3 mod 4.
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Proof of Main Result

We will begin by showing that if the circle C, : x> + y? = n has an
integral point, then any prime factors g = 3 mod 4 of n appear to
an even power in the prime factorization of n.

Proof (=): Suppose first that C, has an integral point, i.e.,
n = a’ + b? for some a, b € Z.

Also suppose that n has a prime divisor ¢ = 3 mod 4.

Then, by Lemma 12.1.9, the prime g appears to an even power in
the prime factorization of n.
O
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Proof of Main Result Continued...

Now we will show that if all prime p = 3 mod 4 show up with even
power in the prime factorization of n, then C, has an integral point.

Proof (<): Assume that for all primes p = 3 mod 4, p shows up
in an even power in the prime factorization of n.

We can split n such that n = n’'m?, where n’ is square-free, and we
can assume that n’ is not divisible by any prime p. Then

n =2pipo-- pr,

where £ is 0 or 1, and p; = 1 mod 4 are prime for 0 </ < t.

Note that 2 = 12 + 12, and so by Theorem 12.1.5, it follows that
[ = a? + b,2 for a;, b; € 7.
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Proof of Main Result Continued...

Proof continued: Since we have shown that the factors of n’ are
individually sums of two squares, we can repeatedly apply Lemma
12.1.7, which lets us find that n’ = a’> 4+ b’? for some a', b’ € Z.
Thus,

n=n'm?*= (3% + b?)m* = (a'm)*> + (b'm)°.

Therefore, nis a sum of two squares.

Since n = (a'm)? 4 (b'm)?, the circle C, has integral point, namely
(a'm, b'm).
O
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Thank you!

Questions?
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