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Context

This semester, I worked through a couple of the later chapters in
Number Theory and Geometry by Álvaro Lozano-Robledo.

This presentation will focus on content from “Chapter 12: Circles,
Ellipses, and The Sum of Two Squares Problem”.
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Main Question

When can an integer be written as the sum of
two squares?
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Motivation

There are plenty of reasons we may want to know when an integer
is a sum of two squares. This problem has applications relating to
finding Pythagorean triples and lattice points on a plane.

The problem of determining if an integer is a sum of two squares is
equivalent to determining if a circle with integer radius has integral
points.

Less obviously, this turns out to be equivalent to determining if a
circle has rational points.

3



Motivation

There are plenty of reasons we may want to know when an integer
is a sum of two squares. This problem has applications relating to
finding Pythagorean triples and lattice points on a plane.

The problem of determining if an integer is a sum of two squares is
equivalent to determining if a circle with integer radius has integral
points.

Less obviously, this turns out to be equivalent to determining if a
circle has rational points.

3



Motivation

There are plenty of reasons we may want to know when an integer
is a sum of two squares. This problem has applications relating to
finding Pythagorean triples and lattice points on a plane.

The problem of determining if an integer is a sum of two squares is
equivalent to determining if a circle with integer radius has integral
points.

Less obviously, this turns out to be equivalent to determining if a
circle has rational points.

3



Background

An explanation of some useful notation and
terminology.

3



Integral and Rational Points

Integral and Rational Points

An integral or rational point on a curve C is a point (x , y) ∈ C
such that x , y ∈ Z or x , y ∈ Q, respectively.

Example of an Integral Point

The circle C25 : x
2 + y2 = 25 has an integral point at (3, 4).
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Integer Congruence

Integer Congruence

Two integers a, b are congruent mod n (denoted a ≡ b mod n) if
a− b = nm for some integer n.

Integers that are congruent mod n have the same remainder when
divided by n.

Example

We can see that 13 ≡ 5 mod 8 and 9 ≡ 2 mod 7.
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Quadratic Residue

Quadratic Residue

An integer q is a quadratic residue mod n if q ≡ x2 mod n for
some integer x .

Example

The numbers 0, 1, and 4 are the quadratic residues mod 5, since
0 ≡ 02 mod 5, 1 ≡ 12 ≡ 42 mod 5 and 4 ≡ 22 ≡ 82 mod 5.

The numbers 2, 3 are quadratic non-residues mod 5, because there
do not exist x ∈ Z such that x2 ≡ 2, 3 mod 5.
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Legendre Symbol

Legendre Symbol

Let p > 2 be an odd prime and let a be an integer. The Legendre
Symbol is defined as follows:

(
a

p

)
=


0 if p | a,
1 if a is a quadratic residue mod p,

−1 if a is a quadratic non-residue mod p.

Example

From the previous example, since 4 is a quadratic residue mod 5, it
follows that

(
4
5

)
= 1.

Since 2 is a quadratic non-residue mod 5, it follows that
(
2
5

)
= −1.
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Preliminary Results

We will need to see some lemmas and
preliminary results that will be used in main

result.
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Lemma 10.3.4

Lemma (10.3.4)

Let p > 2 be a prime and let a, b ∈ Z relatively prime to p. Then

1.
(
ab2

p

)
=

(
a
p

)
. In particular

(
b2

p

)
= 1.

2. If a ≡ b mod p, then
(

a
p

)
=

(
b
p

)
.

3.
(
−1
p

)
= (−1)(p−1)/2.
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Lemma 12.1.7

Lemma (12.1.7)

Let m, n be integers such that m = a2 + b2 and n = c2 + d2, for
some a, b, c , d ∈ Z. Then we have,

mn = (ac + bd)2 + (ad − bc)2 = (ac − bd)2 + (ad + bc)2.

Numerical Example

Take 25 = 32 + 42 and 13 = 22 + 32, then

325 = (25)(13) = (3 · 2 + 4 · 3)2 + (3 · 3− 4 · 2)2 = 182 + 12.
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Lemma 12.1.9

Lemma (12.1.9)

Let n be an integer such that n = a2 + b2 for some a, b ∈ Z, and
suppose q is a prime such that q ≡ 3 mod 4.

1. If q | n, then q | a and q | b. In particular, q2 | n.
2. If q | n, then q appears to an even power in the prime

factorization of n.
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Theorem 12.1.5

Theorem (12.1.5)

An odd prime p is a sum of two squares if and only if p ≡ 1 mod 4.

Proof (⇒): Suppose p is an odd prime such that p = a2 + b2 for
some a, b ∈ Z.

Notice that gcd(ab, p) = 1. If p | a, then p | (p − a2) = b2, so
p | b which would imply p2 | (a2 + b2) = p a contradiction.

We have that a and b are units mod p, and therefore invertible.

Recall that a2 + b2 ≡ 0 mod p, so a2 ≡ −b2 mod p. It follows
then that (ab−1)2 ≡ −1 mod p.

Therefore, −1 is a square mod p, and by Lemma 10.3.4, we know
(p − 1)/2 is even. Thus, p ≡ 1 mod 4.
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Proof of Theorem 12.1.5 Continued...

Proof (⇐): Assume that p ≡ 1 mod 4, so Lemma 10.3.4 shows
−1 is a square mod p for some s ∈ Z such that s2 ≡ −1 mod p.

Let ⌊√p⌋ be the floor of
√
p, and consider the set of integers

S = {(x , y) : 0 ≤ x , y < ⌊√p⌋}.

We claim that there are two distinct pairs (x1, y1) and (x2, y2) in S
such that sx1 − y1 ≡ sx2 − y2 mod p.

If all possible values of sx − y for (x , y) ∈ S were distinct mod p,
then there would be (⌊√p⌋+ 1)2 distinct values mod p in S , but

(⌊√p⌋+ 1)2 > (
√
p)2 = p.

12



Proof of Theorem 12.1.5 Continued...

Proof (⇐): Assume that p ≡ 1 mod 4, so Lemma 10.3.4 shows
−1 is a square mod p for some s ∈ Z such that s2 ≡ −1 mod p.

Let ⌊√p⌋ be the floor of
√
p, and consider the set of integers

S = {(x , y) : 0 ≤ x , y < ⌊√p⌋}.

We claim that there are two distinct pairs (x1, y1) and (x2, y2) in S
such that sx1 − y1 ≡ sx2 − y2 mod p.

If all possible values of sx − y for (x , y) ∈ S were distinct mod p,
then there would be (⌊√p⌋+ 1)2 distinct values mod p in S , but

(⌊√p⌋+ 1)2 > (
√
p)2 = p.

12



Proof of Theorem 12.1.5 Continued...

Proof (⇐): Assume that p ≡ 1 mod 4, so Lemma 10.3.4 shows
−1 is a square mod p for some s ∈ Z such that s2 ≡ −1 mod p.

Let ⌊√p⌋ be the floor of
√
p, and consider the set of integers

S = {(x , y) : 0 ≤ x , y < ⌊√p⌋}.

We claim that there are two distinct pairs (x1, y1) and (x2, y2) in S
such that sx1 − y1 ≡ sx2 − y2 mod p.

If all possible values of sx − y for (x , y) ∈ S were distinct mod p,
then there would be (⌊√p⌋+ 1)2 distinct values mod p in S , but

(⌊√p⌋+ 1)2 > (
√
p)2 = p.

12



Proof of Theorem 12.1.5 Continued...

Proof continued: Since there are exactly p distinct values in the
set of representatives mod p, this is a contradiction.

Therefore, there must be two distinct pairs (x1, y1) and (x2, y2)
such that sx1 − y1 ≡ sx2 − y2.

Equivalently, we can say that sx0 ≡ y0 mod p where x0 = x1 − x2
and y0 = y1 − y2. Since (x1, y1) ̸= (x2, y2), we know that at most
one of x0 or y0 must be non-zero.

It follows from sx0 ≡ y0 that s2x20 ≡ y20 , and therefore we have

−x20 ≡ y20 mod p ⇒ x20 + y20 ≡ 0 mod p.

Thus, x20 + y20 is some non-zero integer multiple of p, and

0 < x20 + y20 ≤ (⌊√p⌋)2 + (⌊√p⌋)2 = 2(⌊√p⌋)2 < 2(
√
p)2 = 2p.

There is one multiple of p strictly between 0 and 2p. Therefore,
x20 + y20 = p, so p is a sum of two squares.
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Main Result

Theorem (12.1.10)

Let n > 1 be a natural number. The circle Cn : x2 + y2 = n has an
integral point if and only if every prime divisor p of n with
p ≡ 3 mod 4 appears to an even power in the prime factorization
of n.

Equivalently, n can be be written as a sum of two squares if and
only if the square-free part of n is not divisible by any prime p of
the form p ≡ 3 mod 4.
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Proof of Main Result

We will begin by showing that if the circle Cn : x2 + y2 = n has an
integral point, then any prime factors q ≡ 3 mod 4 of n appear to
an even power in the prime factorization of n.

Proof (⇒): Suppose first that Cn has an integral point, i.e.,

n = a2 + b2 for some a, b ∈ Z.

Also suppose that n has a prime divisor q ≡ 3 mod 4.

Then, by Lemma 12.1.9, the prime q appears to an even power in
the prime factorization of n.
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Proof of Main Result Continued...

Now we will show that if all prime p ≡ 3 mod 4 show up with even
power in the prime factorization of n, then Cn has an integral point.

Proof (⇐): Assume that for all primes p ≡ 3 mod 4, p shows up
in an even power in the prime factorization of n.

We can split n such that n = n′m2, where n′ is square-free, and we
can assume that n′ is not divisible by any prime p. Then

n′ = 2ℓp1p2 · · · pt ,

where ℓ is 0 or 1, and pi ≡ 1 mod 4 are prime for 0 ≤ i ≤ t.

Note that 2 = 12 + 12, and so by Theorem 12.1.5, it follows that
pi = a2i + b2i for ai , bi ∈ Z.
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Proof of Main Result Continued...

Proof continued: Since we have shown that the factors of n′ are
individually sums of two squares, we can repeatedly apply Lemma
12.1.7, which lets us find that n′ = a′2 + b′2 for some a′, b′ ∈ Z.
Thus,

n = n′m2 = (a′2 + b′2)m2 = (a′m)2 + (b′m)2.

Therefore, n is a sum of two squares.

Since n = (a′m)2 + (b′m)2, the circle Cn has integral point, namely
(a′m, b′m).
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Thank you!

Questions?
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