Just 2015

1) Let X be a topological space and let A be a subset of X. Either prove the following statement, or give a counter-example.

1. If A is connected, then the closure A is connected.

If: Let $\overline{A} \subseteq UUV$ where U,V are open, nonempty, and disjoint. $(\overline{A} \cap U, \overline{A} \cap V \text{ nonempty}).$

Since A is connected, A=U or A=V.

WLOG, Suppose A = U WE WTS ANV = Ø (XEA = XEU).

If $x \in A$, then $x \in \mathcal{U}$.

If x is a limit point of A, then every nobled of x intersects $A \setminus \{x\}$. So V is an open nobled s.t. $U \cap V = \emptyset$ and $X \in V$, so $V \cap A = \emptyset$. This is a contradiction to every nobled of x intersecting $A \setminus \{x\}$.

So XEA, ANV= \$ = A + UUV.

Therefore, if A is connected, then A is connected. [

2. If A is connected, then its interior Int(A) is connected. <u>Pf:</u> Let $A = \{(x,y) \in \mathbb{R}^2 : x < 0 \} \cup \{(x,y) \in \mathbb{R}^2 : x > 0 \} \cup \{(0,0) \}$.

left-half plane night-half plane origin

Observe that A is connected, and that

Int(A) = {(x,y) \in R2: x < 03 U \{(x,y) \in R2: x > 0\} is disconnected.

left-half plane nght-half plane

There is no open ball around (0,0), say B(0,0)(r), where r>0, s.t. $B(0,0)(r) \subseteq A$. Therefore, $(0,0) \notin In+(A)$, so In+(A) is \mathbb{R}^2 without the y-axis. Thus, In+(A) is not connected.

continued ...

2) Define the equivalence relation on IR such that x~y if x-y is rational. Let IR/~ be the quotient space with the quotient topology. Show that IR/~ is not Hausdorff.

Pf: Let $q: \mathbb{R} \to \mathbb{R}/\sim$ be the quotient map. Observe that [0] and $[\pi]$ are two distinct points in \mathbb{R}/\sim since $\pi-0=\pi\not\in \mathbb{Q}$.

We WTS that every nobled of [0] intersects every nobled of [17].

Let U be an open nobld of [0].

Since q is continuous and U is open in \mathbb{R}/\sim , $q^{-1}(U)$ is open in \mathbb{R} . We know that $0 \in q^{-1}(U)$.

Since q'(u) is open, we have that $0 \in (-\varepsilon, \varepsilon) \subseteq q'(u)$ for some $\varepsilon > 0$. this is saturated and contains an interval.

Let $x \in \mathbb{R}$ be arbitrary. Choose $r \in (x-\varepsilon, x+\varepsilon)$, $r \in \mathbb{Q}$.

So $X-r \in (-\varepsilon, \varepsilon) \Rightarrow X-r \in q^{-1}(u)$, so $X-r \sim X$.

Since $X-r \sim X$ and $q^-(u)$ is saturated and $X-r \in q^-(u)$, we have that $X \in q^-(u)$.

Since x was arbitrary in IR, we have that IR=q-1(u).

Taking q of both sides, we get $q(R) = q(q^{-1}(u)) = U$ since q is surj.

So we have shown that $U=\mathbb{R}/\sim$, so $U \wedge V \neq \emptyset$ for any open, nonempty $V \subseteq \mathbb{R}/\sim$.

Therefore, we conclude that IRIN is not Hausdorff.

3 Let X,Y be topological spaces. Assume that Y is Hausdorff. Let $f,g: X \to Y$ be continuous functions. Suppose that there exists a dense subset D of X such that f(x) = g(x) for all $x \in D$. Prove that f(x) = g(x) for all $x \in X$.

Pf: Let $A = \{x \in X : f(x) = g(x)\}$ we want to Show that A is closed, so we will do this by showing that $X \mid A = \{x \in X : f(x) \neq g(x)\}$ is open.

Let x ∈ X \ A. Then f(x) ∈ Y.

Take g(x) ey. Since x \(\int X\)\(\lambda\), we know that \(f(x) \neg g(x)\).

Since Y is Hausdorff, there exist open nbhds $U \circ ff(x)$ and $V \circ fg(x)$ such that $U \cap V = \emptyset$.

Since f, g are cts and U, V are open in Y, we have that f'(u) and g'(v) are open in X.

Observe that x e f'(U) and x e g'(V).

Let W = f -1(u) ng-1(v).

Wis open (finite intersection of open sets is open) and wis nonempty (x ∈ W) and a nbhd of x.

We WTS that WNA = Ø:

Let yEW. Then f(y) EU because W=f-(u).

Since yew, we also have g(y) = V because W=g-(v).

But UNV = Ø, so f(y) + g(y) for all y = W.

Therefore, WNA = & by definition of A.

SO XEW = XIA.

Therefore, XIA is open => A is closed.

So we have that A is a closed set s.t. D=A=X.

Since D is dense in X, we get that A = X.

Thus, $f(x) = g(x) \forall x \in X$.

Continued.

- (4) A topological space X is said to be contractible if the identity map Idx: X→X is null-homotopic, i.e., homotopic to a constant map.
- 1. Show that any convex subset of R" is contractible.

Pf: Let A = R" be convex.

We WTS that Ida: A -> A is homotopic to a constant map, Cx.

Let H:[0,1]xA -> X be defined by H(t,x)=(1-+)X++Xo.

first we will check that His a homotopy: (His clearly cts)

$$H(0, X) = Id_A(X) = X,$$

 $H(1,x) = C_{x_0}(x) = X_0$

Therefore, His a homotopy.

Since A is convex, H(+,x) & A for all t & [0,1], x & A.

Thus, A is contractible.

2. Let Y be a topological space. Show that if X is contractible, then any map $f: X \to Y$ is null-homotopic.

Pf: Since X is contractible, Idx: X → X is homotopic to a constant map, Cxo.

Let
$$H: [0,1] \times X \rightarrow X$$
 such that $H(0,X) = Id_X(X) = X$,
 $H(1,X) = C_{X_0}(X) = X_0$.

Then define $\widetilde{H}: [0,1] \times X \rightarrow Y$ by $\widetilde{H}(t,x) = (f \circ H)(t,x)$.

His cts since it is the comp. of cts. fns.

We will check that H is a homotopy

$$H(0, x) = f(H(0, x)) = f(x)$$

$$H(1,x) = f(H(1,x)) = f(x.)$$

this is some constant.

Therefore, H is a homotopy.

Thus, f is null-homotopic to a constant map.

mued ..

3 Let E, X be topological spaces. Assume that E is connected. Let q: E→ X be a covering map with q'(x) finite and nonempty for all XEX. Show that E is compact if and only if X is compact.

Pf: Suppose E is compact.

Covering maps are continuous and surjective.

So we have that q(E)= X and since q cts, Ecpt => q(E)=X is cpt. (the cts image of a compact set is compact).

· Suppose X is compact.

Let {Ua}aeI be an arbitrary open cover of E (Ua = E open).

Claim: For each x ∈ X, I a nobld Vx of x s.t. q'(Vx) can be covered by finitely many Ux's.

Assuming the claim, we can write X=UVx = UVx; (blc X is cpt).

Then $E = q^{-1}(X) = \hat{U}q^{-1}(V_{X_i}) = \hat{U}\hat{U}\hat{U}_j$, where each $\hat{U}_j \in \{U_{\alpha}: \alpha \in I\}$

(Let Ui,..., Un; is a finite collection of Ux's that cover q-1(Vxi))

So we have $E \subseteq \bigcup_{i=1,j=1}^{n} u_i^i$ is a finite union \Rightarrow finite subcover of E.

Therefore, E is compact.

Proof of claim: We have [Ma] de I an arbitrary open cover of E, X E X. We want a noble V of x s.t. q'(V) can be covered by finitely many U's. Since q'(x) is finite, write q'(x) = {e,,..,en}.

Let U; be a member of the [Ua] cover that contains e; for i=1,...,n. Let W be any evenly covered nobal of x and write q'(W) = U, W;

We can relabel these slices if needed so that eieWi.

Then eie UinWi for each i.

Since q is open, the sets q(UiNWi) are open in X and contain x for each i. Set V = n q (uin Wi)

We claim that q'(V) = "ui. Let y eV arbitrary.

By definition of V, there exists y; Eu; NW; s.t. q(yi) = y for i=1,...,n.

Disjointness of the W; guarantees the yi's are distinct.

continued ...

We know the fiber q'(y) intersects each W; exactly once (recall that yeW and the Wi's are the slices of q'(W)).

Hence the fiber $q^{-1}(y)$ contains exactly n points, so we have shown $q^{-1}(y) = \{y_1, ..., y_n\} \subset U_i$.

Since ye V was aribrary, we conclude q'(v) = 0 ui.

of Let $n \ge 3$. Suppose that M is connected n-dimensional manifold, and $p \in M$. Show that the inclusion $M \setminus \{p\} \hookrightarrow M$ indues an isomorphism between their fundamental groups $\Pi_i(M \setminus \{p\}) \cong \Pi_i(M)$.

Pf Note that connected manifolds are path-connected. Therefore, TI, (M) does not

depend on the base point.

Let PiqEM be distinct. It suffices to show that every loop at q in M is homotopic to a loop at q that does not pass through p.
Let [f] ETI.(M.a.)

Let U be a nbhd of ρ that is homeomorphic to the open unit ball in \mathbb{R}^n . Let $V = M \setminus \{ \beta \}$. Since $U \cap V = M$, we must have that $\{ f^{-1}(u), f^{-1}(v) \}$ is an open cover of $\{ 0, 1 \}$.