isolated point of T. Is I necessarily a finite set? Prove your assertion.

Pf: I is not necessarily a finite set.

Consider the compact space [0,1] of R.

Let T= { \frac{1}{n} : n \in N}.

Observe that every point of I is an isolated point:

For each point $h \in \Gamma$, \exists an open nobld $B_{\varepsilon}(h)$, where $\varepsilon = \frac{(h-n+1)}{2}$.

Then $B_{\varepsilon}(\frac{1}{n}) \cap \Gamma = \{\frac{1}{n}\}$, so each $\frac{1}{n} \in \Gamma$ is an isolated point of Γ . Also, notice that Γ is not finite.

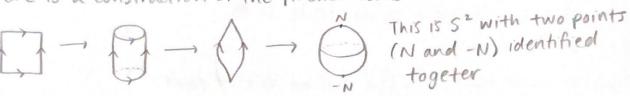
Therefore, a subset T, of a compact space, s.t. every point of T is an isolated point of T, need not necessarily be a finite set.

Continued ...

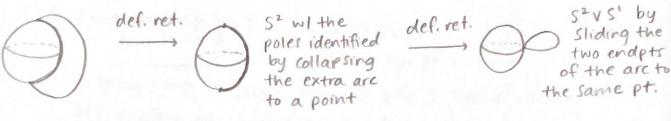
2 Compute the fundamental group of the quotient space (s'x s')/(s'x xx), who x is a point in S'.

Pf. Let X = (S' x S')/(S' x {x}).

Here is a construction of the pinched torus:



X is homeomorphic to the sphere with two points identified



So we have that $\pi_1(X) = \pi_1(S^2 \vee S')$.

Each space, S^2 and S', is locally Euclidean, so the wedge point has a noble in each space that deformation retracts to the wedge point (itself).

Therefore, we can use the following version of Van-Kampen: $\pi_1(S^{\perp} \vee S') = \pi_1(S^{\perp}) = \pi_1(S') = 0 * \mathbb{Z} = \mathbb{Z}$.

Thus, we conclude that $\pi_i(x) = \mathbb{Z}$.

hed.

Let Z be the topology on \mathbb{R}^2 such that every nonempty open set of Z is of the form $\mathbb{R}^2\setminus\{a \text{ t most finitely many point}\}$.

(i) Is (R2, Z) Hausdorff? Prove your assertion.

Pf: Let $X = (R^2, Z)$. We WTS that X is not Hausdorff, i.e., there exist two distinct points $x,y \in X$ s.t. every open nobal of x intersects every open nobal of y.

Consider the distinct points (0,0) and (0,1) in X.

Let U be any open nobal of (0,0) and V be any open nobal of (0,1). Then U and V must be of the form IR2 \ \ \ at most finitely many points \ \ \ \ .

So XIU and XIV must be finite.

If UNV= Ø, then V = X\U => V is finite

But $R^2 = VUV^c \implies R^2$ is finite. $\frac{1}{2}$ finite

Therefore, UNV + Ø.

Thus, (B2, Z) is not Hausdorff.

(ii) Is (R2, Z) first countable? Prove your assertion.

Pf: We WTS that X is not first countable. (X=(R2,Z))

We will do this by showing that o does not have a countable local basis.

Assume {un: neN} is any countable collection of nbhds of O.

To prove fung is not a local basis, we need to find a nobled V of 0 s.t. V does not contain any Un.

Let $V = \tilde{U} \tilde{U}_n^c$. Then V is a countable union of finite sets, so V is countable $V \neq \mathbb{R}^2$.

Since X is uncountable, we may consider some nonzero xEXIV because XIV is an infinite set.

Then the set X\{x\} is an open nibhd of 0 that does not contain any of the Un's, since XEUn for all n.

Hence, {Un} = is not a local basis at 0.

Therefore, it follows that X is not first countable.

П

Continued ...

The Show that every continuous map from IRIP2 to S' is homotopic to a constant ma

FIR we would like to use the general lifting lemma to Show that there exists a lift 7: IRIP2 - IR.

Observe that IRIP2 is path-connected because it is the cts image of S2, a path-conn. space.

Observe that IRIP2 is locally path-connected because q: 52 - IRIP2 is a local homeomorphism.

Let p: R→S' (the exp. map) be a covering map.

It remains to Show that fx(T,(RP2)) = px(T,(R)).

Since m, (R) = 0, it suffices to show that f* (m, (RP2)) = 0.

Notice that TI (RP2) = Z/2Z is finite, so f. (TI (RP2)) is finite.

We have that fx (TI (RIPZ)) STI (S') = I.

The only finite subgroup of Z is O.

So f* (T, (RP2)) = 0 = p* (T,(R)) V.

Therefore, by the general lifting lemma, we have that 7 PRIP2 -> PR is a lift.

Recall that any cts fn. into a contractible space is null-homotopic.

Since 7 is cts and IR is contractible, we have that 7 is null-homotopic.

Since I is null-homotopic, we have that f is null-homotopic (if H is a homotopy between I and a constant map, then poH is a homotopy between f and a constant map).

Therefore, f is null-homotopic.

Thus, we conclude that every cts map from RP2 to S' is homotopic to a constant map.

Rued ..

Let M be the quotient space of $\mathbb{R}^3\setminus\{0\}$ obtained by identifying the points (x,y,\pm) with $(2^mx,2^my,2^m\pm)$ for any integer m. Is M homeomorphic to $S^2\times S^1$? Prove your assertion.

Pf. We may view $\mathbb{R}^3 \setminus \{0\}$ as $S^2 \times (0, \infty)$. With this in mind, we can write $M = (S^2 \times (0, \infty))/N$, where $N = (S^2 \times ($