ust 2021

(1) A topological space X is said to be metritable if its topology is generated by some metric on X. Does every compact metritable space X have a countable basis? Prove your assertion.

Pf: Recall that if X is a metritable space, then X second countable $\iff X$ separable $\iff X$ Lindëloff.

Let X be a compact metrizable space.

Compact spaces are always Lindeloff.

Since X is compact, X is Lindeloff.

In a metnzable space X, X is second countable ⇔ X is Lindëoff. Since X is metnizable and Lindëloff, we have that X is second countable.

Therefore, every compact metritable space X has a countable basis (i.e., is second countable).

continued ...

2) Suppose q: X → Y is an open quotient map. Prove that Y is Hausdorff if and only if the set A = {(X, X2): q(X1) = q(X2)} is closed in X × X.

Pf: · Suppose Y is Hausdorff.

We WTS that $R = \{(x_1, x_2): q(x_1) = q(x_2)\}$ is closed in $X \times X$. We will do this by showing that $X \times X \setminus R = \{(x_1, x_2): q(x_1) \neq q(x_2)\}$ is open. Let $(x_1, x_2) \in X \times X \setminus R$.

Then q(x1), q(x2) & Y s.t. q(x1) + q(x2).

Since Y is Hausdorff and $q(x_1) \neq q(x_2)$, \exists open nbhols U of $q(x_1)$ and V of $q(x_2)$ s.t. $U \cap V = \emptyset$.

Since q is cts and U, V = Y are open, we have that q'(u) and q'(v) are open in X.

Observe that x, eq'(U) and x2 eq'(V).

Let W := q'(u) x q'(v).

Clearly (X1, X2) & q-(U) x q-(V) = W.

W is open since it is the product of two open sets.

We WIS that WAR = Ø:

Let (y1, y2) & W = q'(U) x q'(V).

Since $y_1 \in q^{-1}(U)$, we have $q(y_1) \in U \setminus U \cap V = \emptyset$, so $q(y_1) \neq q(y_2)$ Since $y_2 \in q^{-1}(V)$, we have $q(y_2) \in V \setminus \{0\}$ for all $(y_1, y_2) \in W$.

Therefore, WMR=ø. Jopen So we have $(X_1, X_2) \in W \subseteq X \times X \setminus R$.

Thus, XXX \R is open => R is closed.

We conclude that if Y is Hausdorff, then the set $R = \{(X_1, X_2): q(X_1) = q(X_2)\}$ is closed in $X \times X$.

Suppose $R = \{(x_1, x_2): q(x_1) = q(x_2)\}$ is closed in $X \times X$. We WTS that Y is Hausdorff: for $y_1, y_2 \in Y$ $(y_1 \neq y_2)$, \exists open nbhds U of y_1 and V of y_2 s.t. $U \cap V = \emptyset$.

Let $y_1, y_2 \in Y$ s.t. $y_1 \neq y_2$. Since q is surjective, we know $\exists x_1, x_2 \in X$ s.t. $q(x_1) = y_1$ and $q(x_2) = y_2$. $(q(x_1) \neq q(x_2)$ since $y_1 \neq y_2$). So we know that (x1, x2) ≠ R, i.e., (x1, x2) € X×X\R which is open since R is closed.

Since $X \times X \setminus R$ is open, we have that $(X_1, X_2) \in B \subseteq X \times X \setminus R$, where B is a basis element for the product topology.

We know that a basis for the product topology is

{UxV: U, V are open in X}, so B= UxV where U, V are open in X.

Since (x,,x2) ∈ B, we have that x, ∈ U, x2 ∈ V where U, V are open

In X from B. Since q is open, we have that q(u) and q(v) are open in Y. Observe that $q(x_i) \in q(u)$ and $q(x_2) \in q(v)$

So $y_1 \in q(u)$ and $y_2 \in q(v)$, i.e., q(u) is an open nobal of y_1 and q(v) is an open nobal of y_2 .

We WTS that $q(u) \cap q(v) = \emptyset$. Recall that U_1V are open sets, $B = U \times V$ and $B \subseteq X \times X \setminus R$, so if $(X_1, X_2) \in B$, then $q(X_1) \neq q(X_2)$.

Let y Equunq(V).

Since $y \in q(u)$, $\exists x_1 \in U \text{ s.t. } q(x_1) = y \ q(x_1) = q(x_2) = y \ d$ Since $y \in q(v)$, $\exists x_2 \in V \text{ s.t. } q(x_2) = y \ definition of B.$

Therefore, $q(u) \cap q(v) = \emptyset$.

Thus, for $y_1, y_2 \in Y$ $(y_1 \neq y_2)$, \exists open nbhds q(u) and q(v) s.t. $q(u) \land q(v) = \emptyset$.

We conclude that if $R = \{(x_1, x_2) : q(x_1) = q(x_2)\}\$ is closed in $X \times X$, then Y is Hausdorff.

continued.

3) Prove that a space X is contractible if and only if every map f: X - Y, for an arbitrary Y, is null-homotopic.

Pf: · Suppose f: X → Y, for an arbitrary Y, is null-homotopic. Let Y= X, so f: X -> X is idx: X -> X, which is null-homotopic. Therefore, X is contractible.

· Suppose X is contractible.

We WTS that f: X - y is null-homotopic.

Since X is contractible, we have that idx: X -> X is homotopic to a constant map, cx.

Let $H: [0,1] \times X \rightarrow X$ be the homotopy, so $H(0, x) = id_X(x) = X$, $H(I,X) = C_{X_0}(X) = X_0$.

Let $\widetilde{H}: [0,1] \times X \to Y$ be defined by $\widetilde{H}(t,x) = (f \circ H)(t,x)$. Observe that H is continuous since it's the composition of continuous functions.

Observe that $\widetilde{H}(0, X) = f(H(0, X)) = f(X)$ and $\widetilde{H}(1,x) = f(H(1,x)) = f(x_0)$ fixed.

Therefore, H is a homotopy between f and a constant map. Thus, every map f: X -> Y, for an arbitrary Y, is null-homotopic.

Rued ... Let X be the space obtained from R3 by removing the circle C= {(0,y, 2) & 13: y2+ 22= 4}, Compute TI(X). 52 with a diameter Pf: def. ret. homotopy def. ret. moving the endpoints of the diameter to one point Therefore, we have $\pi_1(X) = \pi_1(S' \vee S^2)$ taking the loop outside nom. of the sphere U is open, path-connected. TI(U)=TI(S2)=0 V is open, path-connected. TI, (V) = TI, (S') = Z Observe that S'VS2 = UUV. UNV = of def. ret UNV is path-connected, nonempty. Ti(UNV)=0.

Since $U \cap V$ is simply connected, we can use the following version of V an-Kampen: $\Pi_1(S' \vee S^2) = \Pi_1(U \vee V) = \Pi_1(U) * \Pi_1(V) = 0 * \mathbb{Z} = \mathbb{Z}$. Therefore, $\Pi_1(X) = \Pi_1(S' \vee S^2) = \mathbb{Z}$.

Thus, $r_1(X) = \mathbb{Z}$.

continued ...

⑤ Let p: X → Y be a covering map and Y be path-connected and locally path connected. If A⊆ X is a path component of X, is pA: A → Y a covering map? Prove your assertion. Here pA is obtained by restricting p on A.

Pf: Yes, PA is a covering map.

First, we will prove that PA is surjective.

Let yex and a eA arbitrary. Since Y is path-connected, there is a path

f from p(a) to y.

By the path-lifting lemma, there exists a lift \tilde{f} of f beginning at a. By defn. of lift, $p \circ \tilde{f}(1) = f(1) = y$.

So p carries out the point $\tilde{f}(1)$ to y. Since \tilde{f} is a path in X that intersects the path component A, $\tilde{f}([0,1]) \in A$, so $\tilde{f}(1) \in A$.

Finally, we need to show that each $y \in Y$ has a p_A -evenly covered nbhd. Let $U \subseteq Y$ be any p-evenly covered nbhd of Y.

Since Y is locally path-connected, there exists a nobld W of y such that

Well and Wis path-connected.

Recalling that an open subset of a p-evenly covered nobal is p-evenly covered, we conclude that W is p-evenly covered.

Finally, we will show that W is p_A -evenly covered as well. We know that $p^-(W) = U \ V_A$ where the V_A are open, pairwise disjoint, and $p:V_A \to W$ is a homeomorphism and I is some index set. In particular, this means each V_A is path-connected because W is path-connected. Notice that $p_A^-(W) = p^-(W) \cap A = U \ V_A \cap A$.

Since A is a path-component and V_{α} is path-connected, we see either $V_{\alpha} \cap A = V_{\alpha}$ or $V_{\alpha} \cap A = \emptyset$.

If we define $J = \{\alpha \in I : V_{\alpha} \cap A = V_{\alpha}\}, \text{ then } p_{A}^{-1}(W) = \bigcup_{\alpha \in J} V_{\alpha}.$

Therefore, PA is a covening map.

A topological space X is said to be normal if it is Hausdorff and for every pair of disjoint closed subsets A, B = X, there exist disjoint open subsets U, V = X such that $A \subseteq U$ and $B \subseteq V$. Prove that if X is compact and Hausdorff, then X is normal.

Pf: Let A, B = X be disjoint closed subsets of X. We WTS that 3 open nbhols U of A and V of B s.t. UNV = Ø.

- · For every a EA and b EB, I open nbhds U of a and V of b s.t. UNV = & because X is Hausdorff.
- 'Fix x e X and A = X closed s.t. x & A. For each aEA, we have open nbhds Ua of x and Va of a s.t. Uanva= Ø.

Observe that A is compact since it is a closed subset of a compact space. Since A is compact, we have that for a given open cover {Va: a∈A}, there is a finite subcover {Va;: a; ∈A, 1≤i≤n}. Let $V = \bigcup_{i=1}^{n} V_{a_i}$ and $U = \bigcap_{i=1}^{n} U_{a_i}$.

Observe that V + & blc ASV and U + & blc X & U. We also have that V is open ble the union of arbitrarily many open sets is open, and U is open ble the finite intersection of open sets is open. So we have that U is an open nobled of x & X and V is an open nobled of ASX s.t. UNV= & b/c UanVa= & YaEA.

Therefore, X is regular. · For each a EA, we have open nbhds Ua of a and Va of B s.t. Uan Va = & because X is regular.

Observe that A is cpt since it is a closed subset of a cpt space. Since A is cpt, we have that for a given open cover {Ua: a ∈ A}, there is a finite subcover {Ua; ai & A, 1 \i i \in n}.

Let $U = \bigcup_{i=1}^n U_{a_i}$ and $V = \bigcap_{i=1}^n V_{a_i}$.

Observe that $U \neq \emptyset$ blc $A \subseteq U$ and $V \neq \emptyset$ blc be V where be B. $(B \subseteq V)$ We also have that u is open (union of arb. open sets) and V is open (finite intersection of open sets). So U is an open nbhd of A and V is an open nbhd of B s.t. UNV= Ø. ble UanVa=& VaEA. Therefore, X is normal.