Topology HW 1

1) Let A and B denote subsets of a topological space X. Prove that AUB = AUB.

P.F. First we will show that AUBEAUB.

Observe that A = AUB = AUB, so AUB is a closed set containing A. Note that A is the smallest closed set containing A, so we have that AS AUB.

Likewise, observe that B = AUB = AUB, so AUB is a closed set containing B. Observe that B is the smallest closed set containing B, so we have that BSAUB. Therefore, AUB = AUB.

Now we will show that AUBSAUB.

We will show this by proving that if X & AUB, then X & AUB. Suppose X & AUB.

If x & A, then I an open nbhol U of x s.t. UNA = Ø.

If X&B, then 3 an open nobled V of x s.t. VAB= g.

Observe that UNV is open since the finite intersection of open sets is open. We also have that UNV + & since X EUNV.

So UNV is an open nobal of x.

Observe that (unv)n(AUB)=& since unv = u and unA=& UNVEV and VNB= Ø.

Therefore, X & AUB because we have an open nobal of x that is disjoint from AUB.

Thus, AUBSAUB.

We conclude that AUB = AUB.

Continued.

(2) Let R_i be the set of real numbers associated with the topology given by the basis $B = \{[a_ib]; a < b, a_ib \in \mathbb{Q}^2\}$. Determine the closure of the subsets $(1,\sqrt{2})$ and $(\sqrt{2},3)$ in R_i .

Pf: First we will determine the closure of (1, 12) in The

Observe that (1, 12) 5 (1, 12).

If x < 1, then an open nbhd of x is $[a_1]$, where $a \in \mathbb{Q}$, $a \le x$. Notice that $[a_1] \cap (1, \sqrt{2}) = \emptyset$. Therefore, every x < 1 is not in $(1, \sqrt{2})$.

If $X>\sqrt{2}$, then an open nbhd of x is [a,b), where $a,b\in Q$, $\sqrt{2}< a < x < b$. Notice that $(1,\sqrt{2}) \wedge [a,b) = \emptyset$. Therefore, every $x>\sqrt{2}$ is not in $(1,\sqrt{2})$.

If X=1, then an open nobled of x is [a,b), where $a,b \in \mathbb{Q}$, $a \le x < b$. Notice that $[a,b) \cap (1,\sqrt{z}) = (1,c) \neq \emptyset$, where $c = \min\{b,\sqrt{z}\}$. Therefore, x = 1 is in $(1,\sqrt{z})$.

If $X=\sqrt{2}$, then an open nbhd of X is [a,b), where $a,b\in\mathbb{Q}$, $a<\widehat{X}< b$. Notice that $(1,\sqrt{2})\cap[a,b)=(c,\sqrt{2})\neq\emptyset$, where $c=\max\{1,a\}$. Therefore, $X=\sqrt{2}$ is in $(1,\sqrt{2})$.

Thus, we conclude that (1, NZ) = [1, NZ] in Re.

· Now we will determine the closure of $(\sqrt{2}, 3)$ in \mathbb{R}_2 .

Observe that $(\sqrt{2}, 3) \subseteq (\sqrt{2}, 3)$.

If $X < \sqrt{2}$, then an open nobal of X is [a,b), where $a,b \in \mathbb{Q}$, $a \le X < b \le \sqrt{2}$. Notice that $[a,b) \land (\sqrt{2},3) = \emptyset$.

Therefore, every X<12 is not in (12,3).

If x>3, then an open about of x is [3,b), where $b\in \mathbb{Q}$, 3< x< b. Notice that $(\sqrt{2},3) \wedge [3,b) = \emptyset$. Therefore, every x>3 is not in $(\sqrt{2},3)$.

If $x=\sqrt{2}$, then an open nobled of x is [a,b), where $a,b\in\mathbb{Q}$, $a<\overline{x}< b$. Notice that $[a,b) \cap (\sqrt{2},3) = (\sqrt{2},c) \neq \emptyset$, where $c=\min\{b,3\}$.

Therefore, $X=\sqrt{2}$ is in $(\sqrt{2},3)$. If X=3, then an open nbhd of X is [a,b), where $a,b\in \mathbb{Q}$, $a\leq 3 < b$.

Notice that $(\sqrt{2}, 3) \cap [a, b) \neq \emptyset$ if $\sqrt{2} < a < 3$. Therefore, x = 3 is not in $(\sqrt{2}, 3)$.

Thus, we conclude that (12,3) = [12,3) in Re.

Recall that a space X is first countable if for each XEX, there is a countable collection Ox of open sets containing x such that whenever U is an open set containing x, there exists some VEOx such that VCU.

Let X be a first countable topological space and XEX and ACX. Prove that XEA if and only if there exists a sequence of points in A converging to x in X.

Pf. Suppose there exists a sequence of points in A converging to x in X. Let {x,} = EA s.t. X, - X EX.

We WIS that XEA, i.e., that every nobhol of X intersects A.

Let U be an open nobal of x. Then there exists N∈N s.t. for all n≥N we have Xn ∈ U. Therefore, UNA + Ø (because Xn ∈ A for n ≥ N). Therefore, X & A.

· Suppose that XEA. Let $O_X = \{V_n\}_{n=1}^{\infty}$ be a local nobal basis at x. We want to construct a sequence in A that converges to x in X. Observe that V, NA 70, ..., V, NA F & for all nEN since XEA.

Let X, EV, NA + Ø, X2 E V2 NA + Ø, ..., Xn E Vn NA + Ø.

We know that each n vinA + & because each n vis a noble of x,

So it must intersect A. Therefore, we have a sequence {xn3n=1 ∈ A. It remains to show that xn -> x.

Let U be an open nobld of x.

Then since X is first countable, we know there exists some VNE IV n3 n=1 for some NEN s.t. VNCU.

If n=N, then XnEV, n. NVnCV, n. NVNCU.

We have that for all noblas U of x, there exists NEIN s.t. n=N implies xn EU.

Therefore, we have constructed a sequence {x,300 of points in A that converges to X ∈ X.

continued ...

4) Prove or disprove the following statements.

(i) Let X be a topological space and CCX be a closed subset. Then C is equal to the closure of its interior, i.e., C = intC.

BC. This Statement is false.

Let X=IR and consider the standard topology.

Let $C = \{0\} \subset X$. A single point is a closed subset in X, so C is closed. Observe that int $C = \inf\{0\} = \emptyset$, and $\overline{\inf}C = \overline{\emptyset} = \emptyset$.

Therefore, we have $C = {03 \neq \emptyset} = \overline{\text{int } C}$.

(ii) The countable collection $\mathcal{B} = \{(a,b), a < b, a, b \in \mathbb{Q}\}$ is a basis that generates the standard topology on the real line \mathbb{R} .

ef First we will prove that B is a basis: for all XER, for all noble U of X, there exists Bx & B s.t. X & Bx C U.

Recall that the basis of the standard topology is composed of all open intervals on the real line IR. The elements of the standard topology are just open sets.

Let x e IR and let U be an open nobal of x.

Since U is open, it must contain an open interval, say (a,b), a,beR, acb. So xe(a,b) = U.

Since Q is dense in IR, we know there exists a basis element (c,d) & B s.t. c,d & Q and a < c < d < b, so x & (c,d) & (a,b) & U.

Since x and U were arbitrarily chosen, we have that B is indeed a basis for R.

· We have shown that the topology generated by B is larger than or equal to the Standard topology, so it remains to show that B is contained in the standard topology.

Every open set is contained in the standard topology.

Therefore, B is contained in the standard topology because B is composed of open intervals which are open sets.

nued ...

(i) Let X be a set and let T= {UCX; XIU is finite}Uf\$. Show that T is a topology. We call (X, T) the cofinite topology of X.

Pf: Observe that pet by definition of T.

· We also have that XET because XCX s.t. XX = \$ is finite.

· We WIS that the union of arbitrarily many open sets is contained in T. Let EVaJaEACT. So XIVa is finite for every a EA. Then

X \ U Vx = \((X \Vx) = X \Vx 15 finite since each X \Vx 15 finite.

Therefore, UVaET.

· We WTS that the finite intersection of open sets is contained in T. Let Vi,..., Vm ET. So XIV; is finite for every 1515m. Then X \ (\(\langle V_i \) = \(\langle \) (X\Vi) is finite since the finite union of finite sets is finite. Therefore, ∩ V; ∈ T.

· Thus, we have shown that T is a topology.

(ii) Let T be the cofinite topology on the set I of integers. Show that the sequence {1,2,3,...} of positive integers converges to every point of I in (I, T).

Pf: We WTS that there exists k such that every integer greater than kisin U.

Take nEZ arbitrary. Let U be an arbitrary nobd of n, UEZ.

Then X/U is finite.

Since X/U is finite, X/U must have a maximum element M sit every integer greater than M is in U.

Therefore, the tailend of the sequence is contained in U, i.e., xx -n. We can do this for all integers since n was chosen arbitrarily.

continued ...

(6) A topological space X is called metrizable if the topology is the metric topology associated with some metric on X.

(i) Show that a metritable topological space X is Hausdorff; that is, for any distinct two points x and y of X, there are open sets U and V such that $x \in U$ and $y \in V$ and $U \cap V = \emptyset$.

Pf. Let (X,d) be a metritable space, where d is the metric. We WTS that (X,d) is Hausdorff.

Let Xo, yo ∈ X s.t. Xo ≠ yo.

Let U be an open noble of x s.t. $U = \{x \in X : d(x,x_0) < \frac{1}{2}d(x_0,y_0)\}$. Let V be an open noble of x s.t. $V = \{y \in X : d(y,y_0) < \frac{1}{2}d(x_0,y_0)\}$. We WTS that $U \cap V = \emptyset$.

Assume $\exists z \in U \cap V$. Then $d(x_0, z) < \frac{1}{2} d(x_0, y_0)$ and $d(y_0, z) < \frac{1}{2} d(x_0, y_0)$.

Observe that $d(x_0, y_0) \le d(x_0, z) + d(y_0, z) < d(x_0, y_0)$, so we have that $d(x_0, y_0) < d(x_0, y_0)$. Therefore, $U \cap V = \emptyset$.

Thus, we have shown that for any Xo, yo EX (xo + yo), 3 open sets U of xo and V of yo s.t. UNV = \$\psi\$, i.e., (X,d) is Hausdorff.

(ii) Let X be an infinite set with the connite topology T. Show that (X,T) is not Hausdorff. Conclude that (X,T) is not metrizable.

Pf: Suppose that (X, T) is Hausdorff.

Then for any distinct $x, y \in X$, there exist open nbhds $U \circ f x$ and $V \circ f y s.t.$ $U \cap V = \emptyset$.

Since U, V are open; we have that X\U, X\V are finite.

⇒U, V are infinite (since X is infinite and X\U, X\V are finite).

Since $U \cap V = \emptyset$, we have that $U \subseteq X \setminus V$ and $V \subseteq X \setminus U$. $\frac{G}{V} = 0$ Contradiction, because an infinite set cannot be a subset of or equal to a finite set.

Therefore, we conclude that (X,2) is not Hausdorff.