Topology HW2

① Let fi, f2: X → Y be continuous map from a topological space X to a Hausdorff Space Y.

(i) Show that the set of points {x e X: f,(x) = f2(x)} is a closed set.

Pf: Let A = {x \in X: f.(x) = f2(x)}. We WTS that A is closed.

We will do this by showing that X\A = {x ex: f,(x) + f2(x)} is open.

Let x ∈ X \ A. Then f, (x), f2(x) ∈ Y s.t. f,(x) + f2(x).

Since Y is Hausdorff and $f_1(x) \neq f_2(x)$, we have that there exist open nbhds U of $f_1(x)$ and V of $f_2(x)$ s.t. $U \cap V = \emptyset$.

Since f_1, f_2 are continuous and U, V are open in Y, we have that $f_1^{-1}(U)$ and $f_2^{-1}(V)$ are open in X.

Observe that xefi(u) and xefi(v).

Let W:=f, (u) nf. (v). So XEW + Ø, i.e., W is nonempty.

W is open since the finite intersection of open sets is open.

We have that Wis an open nobld of X.

WE WIS that WNA = Ø.

Let y & f, - (u) n f_2 (v) = W.

Since yef, (u) = f, (y) & U] but UNV = &

Since $y \in f_2^{-1}(V) \Rightarrow f_2(y) \in V$ So $f_1(y) \neq f_2(y) \ \forall \ y \in W$.

Therefore, WNA = Ø. _ open

Thus, we have X & W = X \ A.

We conclude that XIA is open => A is closed.

(ii) If there exists a dense subset D of X such that $f_1(x) = f_2(x)$ for all $x \in D$, then $f_1(x) = f_2(x)$ on X.

Pf: Recall that if D \leq X is dense, then $\overline{D} = X$.

We WTS that fi(X)=fz(X) YXED=X.

From part (i), we have that A = {x \in X: f, (x) = f2(x)} is closed.

Observe that A contains a dense subset D, so D = A = X.

If D is dense in X and A is closed in X, then A = X.

Therefore, $f_1(x) = f_2(x) \ \forall \ x \in X$.

continued ...

2) Let X and Y be topological spaces, and Y Hausdorff. Let A ⊂ X be a nonempty set. Suppose that f: A → Y is continuous, where A is equipped with the subspace topology. Prove that if there is a continuous extension of f to Ā, then the extension is unique.

Pf: A continuous extension of f to \overline{A} is a continuous function g on \overline{A} such that its restriction to A is equal to f, i.e., $g:\overline{A} \rightarrow Y$ s.t. $g|_A = f:A \rightarrow Y$. Assume that the continuous extension of f to \overline{A} is not unique, i.e., there exist continuous extensions $g_1, g_2: \overline{A} \rightarrow Y$ of f to \overline{A} such that

9.1A = 92 A = f.

Let x ∈ Ā s.t. g1(x) ≠ g2(x).

(Observe that when $x \in A$, then $g_1(x) = g_2(x) = f(x)$ since $g_1|_A = g_2|_A = f$.) Since Y is Hausdorff and $g_1(x) \neq g_2(x)$, we have that there exist open nbhols U of $g_1(x)$ and V of $g_2(x)$ s.t. $U \cap V = \emptyset$.

Since g_1, g_2 are continuous and U, V are open in Y, we have that $g_1^{-1}(U)$ and $g_2^{-1}(V)$ are open in \bar{A} .

Observe that $x \in g_1^{-1}(u)$ and $x \in g_2^{-1}(v)$.

Let $W := g_1^{-1}(u) \cap g_2^{-1}(v)$. So $x \in W$, i.e., W is nonempty. W is open since the finite intersection of open sets is open.

Observe that W is an open nobled of x, and $x \in \overline{A}$.

Since $x \in \overline{A}$, we have that every open nobled of x must intersect A. Let $y \in g_1^-(u) \cap g_2^-(v) = W$.

Since yeg: (u) = g,(y) EUZ UNV= Ø

Since $y \in g_2^{-1}(V) \Rightarrow g_2(y) \in V \int so g_1(y) \neq g_2(y) \ \forall \ y \in W$.

This means that WNA = \emptyset since if yeA, then $g_1(y) = g_2(y)$. This is a contradiction to x being a limit point.

Therefore, if there is a continuous extension of f to A, then the extension is unique.

hinued ..

3 Let $X = \{(x,y) \in \mathbb{R}^2; y = \pm 1\}$. Define M to be the quotient of X by the equivalence relation generated by $(x,1) \sim (x,-1)$ for all $x \neq 0$. Show that M is not Hausdorff.

Pf: Let q: X -> X/~= M be the quotient map.

Consider (0,1), (0,-1) & M.

We WTS that every open nobal of (0,1) intersects with every open nobal of (0,-1), i.e., M is not Hausdorff.

Let UEM be an open nobal of (0,1).

Since q is continuous and u is open, we have that q'(u) is open in X. We know that (0,1) Eq'(u), and since q'(u) is open, we have

 $(0,1) \in \{(x,1): |x| < a\} \subseteq q^{-1}(u)$ | blc $q^{-1}(u)$ is closed under the and $\{(x,-1): 0 < |x| < a\} \subseteq q^{-1}(u)$ | equivalence relation

Let V=M be an open nobled of (0,-1).

Since q is continuous and V is open, we have that q'(V) is open in X. We know that $(0,-1) \in q'(V)$, and since q'(V) is open, we have $(0,-1) \in \{(X,-1): |X| < b\} \subseteq q'(V)$. I blo q'(V) is closed under the and $\{(X,1): 0 < |X| < b\} \subseteq q'(V)$. I equivalence relation

Let 0 < c < minfa, b3.

Then $(c_1) \in q^{-1}(u) \land q^{-1}(v) = q^{-1}(u \land v)$.

If $u \cap v = \emptyset$, then $q'(u \cap v) = q'(\emptyset) = \emptyset$.

Since (c,1) & q'(UNV), we have that q'(UNV) + Ø, so UNV + Ø.

Therefore, we have shown that every open nobled of (0,1) intersects with every open nobled of (0,-1).

Thus, M is not Hausdorff.

continued ...

Q Let RIPⁿ be the real projective processor, i.e., the quotient space of Rⁿ⁺¹\{0}
under the equivalence relation: (X₀,..., X_n) ~ (y₀,..., y_n) if
(X₀,..., X_n) = λ(y₀,..., y_n) for some λ∈ IR. Prove that the quotient map
q: Rⁿ⁺¹\{0} → RIPⁿ is open.

Pf: We with that if $U \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ is open, then $q(u) \subseteq \mathbb{R}\mathbb{P}^n$ is open. Since q is a quotient map, we know that $q(u) \subseteq \mathbb{R}\mathbb{P}^n$ is open iff $q'(q(u)) \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ is open.

Therefore, to show that q(u) is open in IRP", it suffices to show that q'(q(u)) is open in Rn+1/103.

· Let u = 18n+1/803 be open.

Let $x \in q'(q(u))$ (where x does not necessarily need to be in u).

We WTS that for $x \in q^{-1}(q(u))$, \exists an open nobld V of x s.t. $x \in V \subseteq q^{-1}(q(u))$ Since $x \in q^{-1}(q(u))$, we have that $q(x) \in q(u)$.

This means that there must be yell sit. q(y)=q(x).

Then X~y, i.e., y= 2x for some 2ER, 2 +0.

Since U is open and yell, we have $y \in B \subseteq U$, where B is an open ball around y (so $y = \lambda x \in B$).

We can rewrite $y = \lambda x$ as $x = \frac{1}{\lambda}y$.

So $x \in \frac{1}{\lambda}B = \lambda^{-1}B$, which is open because multiplying by a scalar is a homeomorphism, and homeo.'s send open sets to open sets. Observe that $\{\frac{1}{\lambda}:b\in B\}\subseteq \frac{1}{\lambda}B \implies b\in q^{-1}(q(u))$

So $\frac{b}{\lambda} \in q^{-1}(q(u)) \ \forall \ b \in B \Rightarrow x \in \frac{1}{\lambda} B \subseteq q^{-1}(q(u))$ (where $\frac{1}{\lambda} B$ is open)

contains everything related \sim to b.

Therefore, q'(q(u)) is open in Rn+1/503.

Thus, q(u) is open in IRIP. We conclude that q is open, i.e., if $U \le \mathbb{R}^{n+1} \setminus \{0\}$ is open, then $q(u) \le \mathbb{RP}^n$ is open.

3 Recall the diameter of a nonempty subset E of a metric space (M, d) is defined to be diam (E) = 1 sup {d(x,y); x, y & E}. Show that the metric space (M,d) is complete if and only if the following property holds: For any sequence iEx3k=1 of closed nonempty subsets of M satisfying Ext, C Ex for all k≥1, and lim diam(Ex) = 0, the set n Ex consists of precisely one point.

Pf: · Suppose that (M, d) is a complete metric space.

We WTS that nEx contains exactly one point. (E=nEx)

· First we will show that MEk has at most one point (uniqueness). Assume IX, y & E s.t. x, y are distinct. Then d(x,y) > 0. We have that diam $(E_k) \ge d(x,y) \ \forall i \ because \ x,y \in E_k \ \forall \ k \ge 1$. So 0= lim diam(Ex) = d(x,y) > 0. 4 contradiction b/c d(x,y) + 0. K-1+00 00

Therefore, A Ex must contain at most one point.

· Now we will show that nEx has at least one point (existence). Completeness implies that every cauchy sequence converges. We want to construct a Cauchy sequence of points.

Let {Xx} be any sequence with Xx EEx.

Fix E>O. Let N be such that diam (Ex) < E Y x>N = N. Let i, j EIN s.t. i>j. Then the nested condition tells us that Eic Ej, so Xi, Xj E Ej.

So we have that d(xi,xj) < diam(Ej) < E as long as j > N. For i,j>N, min(i,j)>N implies d(xi, xj) < E.

Therefore, {xx3=is a cauchy sequence.

Since {Xx}x=1 is a cauchy sequence, we have that xx -> x for some XEX because (M, d) is complete. We WTS that XEE.

Observe that E: {Xx} = E, so dosedness of E, tells us x E. En: 1 Xx3 k=n = En, lim Xx = X, so X & En by dosedness.

Therefore, XEEn Yn implies that XEE.

Thus, since NEx contains at most and at least one point, it must consist of precisely one point.

· Suppose the given property in the problem statement holds. We WTS that (M, d) is complete.

Let {xx} be an arbitrary cauchy sequence in (M,d).

Define Ex := {xn:n ≥ k3.

Observe that each Ex is closed, nonempty, and ExticEx.

To check the diameter condition, fix E>0.

Let N be such that n, m≥ N implies d(xn, xm) < E (here we use the

Cauchy property).

Then diam(E_N) = diam($\{x_n: n \ge N\}$) = sup $d(x_n, x_m) < \frac{\mathcal{E}}{2} < \mathcal{E}$, where we have used the fact that a set and its closure have the same diameter. (diam(E_N) $\to 0$)

Since we have cheeked all the conditions, the given property tells us that nEx is a one-point set.

Let n Ex = {x}. We want to check that xx → x.

Fix $\varepsilon > 0$. The ball $B(x, \varepsilon/2)$ is a nbhd of x; since $x \in E_k$, $B(x, \varepsilon/2)$ intersects $\{x_n : n \ge k\}$ for every k.

Choose N large enough that d(xn,xm) < E/2 whenever n,m > N.

Let k>N be any index such that $x_k \in B(x, \frac{\varepsilon}{2})$.

Now if j>N is arbitrary, we see

 $d(x,x_j) \leq d(x,x_k) + d(x_k,x_j) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

So $B(x, \frac{\varepsilon}{2})$ contains a tail end of the sequence. Hence $x_n \rightarrow x$. Therefore, (M, d) is complete.

6 Let X be a topological space.

(i) Show that if X is compact Hausdorff, then X is normal.

Pf: Let E, E2 = X be disjoint closed subsets of X.

We WIS that 3 open nbhds U of E1 and V of E2 s.t. UNV= Ø.

Observe that for every $x \in E_1$ and $y \in E_2$, \exists open nobods U of x and V of y s.t. $U \cap V = \emptyset$ because X is Hausdorff.

Now fix XEX and E, SX closed s.t. XEE,

For each $y \in E_1$, we have open nbbds Uy of x and Vy of y s.t. $Uy \cap V_y = \emptyset$. Observe that E_1 is compact since it is a closed subset of a compact space. Since E_1 is compact, we have that for a given open cover $\{V_y: y \in E_1\}$, there is a finite subcover $\{V_y: y \in E_1\}$, $1 \le i \le n$.

Let V = UVy; and U= nUyi.

Observe that V+& because E1=V, and U+& blc X & U.

We also have that V is open ble the union of arbitrarily many open sets is open, and U is open ble the finite intersection of open sets is open. So we have that U is an open nibhol of x and V is an open nibhol of E.

s.t. $U \cap V = \emptyset$ blc $U_y \cap V_y = \emptyset \quad \forall y \in E_1$. Therefore, we have shown that X is regular.

· For each XEE, we have open nbhols Ux of x and Vx of E2 s.t.

Ux NVx = & because X is regular.

Observe that E_i is compact since it is a closed subset of a compact space. Since E_i is compact, we have that for a given open cover $\{U_x: x \in E_i\}$, there is a finite subcover $\{U_{x_i}: x_i \in E_i, 1 \le i \le n\}$.

Let U= UUx; and V= NVx;.

Observe that $U \neq \emptyset$ blc $E_1 \subseteq U$ and $V \neq \emptyset$ blc $y \in V$ where $y \in E_2$ $(E_2 \subseteq V)$. We also have that U is open blc the union of arbitrarily many open sets is open, and V is open blc the finite intersection of open sets is open.

So U is an open noble of E, and V is an open noble of Ez s.t. UNV = \$ 6/C Ux NVx = \$ \text{V} \times E.

Therefore, if X is compact Hausdorff, then X is normal.

continued ...

(ii) In class we proved that if X is second countable and regular, then it is normal.

Assume now X is secound countable and Hausdorff. Is it true that X is normal?

Prove this statement if true, otherwise, provide a counterexample.

Pf: Consider Rx.

Let $B = \{(a,b), (a,b) \mid K\}$ be a basis for \mathbb{R}_K , where $K = \{\frac{1}{h} : n \in \mathbb{Z}^+\}$.

Observe that B with $a,b \in \mathbb{Q}$ is a countable basis (similar to the argument that $\{(a,b): a,b \in \mathbb{Q}^2\}$ forms a basis of \mathbb{R}). So \mathbb{R}_K is second countable.

Let x, y & IRx s.t. x \ y. Then there exist open nbhds U of x and V of y s.t. UNV = \ Ø.

Let x, y & IR s.t. x + y. We have that IRs is Hausdorff, so 3 open nobals u of x

and V of y s.t. $U \cap V = \emptyset$. Since R_K contains more open sets than R_S , we have that R_K is Hausdorff since R_S is.

Therefore, IRx is second countable and Hausdorff.

It suffices to show that Rx is not regular.

We WTS that $\exists x \in \mathbb{R}_K$ and a dosed set $E \subseteq \mathbb{R}_K$ s.t. every open nobld U of X and V containing E have $U \cap V \neq \emptyset$.

Let X = 0 E IRK and let E= K.

To show that E=K is closed in Rx, we will show that R/K is open.

Observe that R/K = U(-n,n)/K, so E=K is closed.

Let U be an open nobad of O and Van open nobad of E.

Then Br(0) \K S U.

U contains some arbitrarily small irrational.

E contains in for some $n \in \mathbb{Z}^+$ s.t. $in < \frac{r}{2}$.

V contains an irrational number $\varepsilon < \dot{\eta} < \frac{\zeta}{2}$.

So EEBr(O) \K ⇒ EEUNV.

Therefore, UNV + \$ => X is not regular.

Thus, X is not normal.