muary 2017:

On R we consider the topology I generated by the basis of all sets of the form (a,b) and all sets of the form (a,b)/K, where K:={h:n EN}.

(a) Prove that [0,1] is not compact in (IR, T).

Pf. We want an open cover of [0,1] that does not admit a finite subcover. Consider the sets $U_n = \left(\frac{1}{n+1}, \frac{1}{n-1}\right) \cup \left(\left(-1, 2\right) \mid K\right)$ for $n \ge 2$ and $U_1 = (\frac{1}{2}, 2) U((-1, 2) \setminus K)$. It is clear that the U_n are open. We see that $UU_n = (-1, 2)$ and $\frac{1}{n} \in U_m$ iff n = m.

To see this last point, notice that we can write $u_n = \{t_n\} \cup ((-1,2) \setminus K)$. Hence the Un form an open cover of [0,1], but removing any Un from the list would remove in from their union.

Therefore, the open cover {Un} does not admit a finite subcover, so [0,1] is not compact in (R, I).

(b) Prove that (IR, I) is connected, but not path-connected.

continued.

ELET X be a set and I and o topologies on X so that I is strictly finer (larger)
than or Prove the following statements:

(a) If (X, T) is compact and Hausdorff, then (X, o) is not Hausdorff.

(b) If (X, o) is compact and Hausdorff, then (X, Z) is not compact.

Hint: Consider the identity map on X.

· Recall that τ strictly finer than $\sigma \Rightarrow (X, \sigma) \subseteq (X, \tau)$.

Pf of (a): consider the identity map on X: idx: (X, T) → (X, o).

Since $\sigma \leq \tau$, we have that for every $U \leq (X, \sigma)$ open, that $id_X^{-1}(u) = U \leq (X, \tau)$ is open.

Therefore, idx is continuous.

Suppose (X, T) is compact and Hausdorff.

Assume that (X, o) is Hausdorff.

Let $K \subseteq (X, T)$ be a closed set.

Closed subsets of compact spaces are compact, so K is compact. The cts image of a cpt set is cpt, so $id_x(K) = K$ is cpt in (X, σ) . Compact subsets of Hausdorff spaces are closed, so $id_x(K) = K$ is closed in (X, σ) .

Therefore, idx is a closed map.

Let K be a subset of (X, τ) s.t. K is closed in (X, τ) , but not in (X, σ) . Such a K exists because τ is strictly firer than σ .

Then idx(K) must be closed in (X, o) since idx is closed.

But id_X is the identity map, so $id_X(K) = K$, which is not closed in (X, σ) . 2 Contradiction since K is not closed in (X, σ) .

Therefore, if (X, T) is compact and Hausdorff, then (X, 0) is not Hausdorff.

Pf of (b): Consider the identity map from part (a): idx: (X, Z) -> (X, 0).

For the same reason as in part (a), idx is continuous.

Suppose (X, 0) is compact and Hausdorff.

Assume (X, T) is compact.

Let K = (X, T) be a closed set.

Closed subsets of compact spaces are compact, so K is compact. The cts image of cpt is cpt, so $id_x(K) = K$ is cpt in (X, σ) .

Compact subsets of Hausdorff spaces are closed, so $id_{x}(K) = K$ is closed in (X, σ) .

Therefore, idx is a closed map.

Let K be closed in (X, T), but not in (X, σ) .

Closed subsets of compact spaces are compact, so we know that K is compact in (X,T). In particular, K is compact in (X,T), not in (X,σ) .

The cts image of cpt is cpt, so idx(K) = K is compact in (X, \sigma) 4 Contradiction since we said that K is not compact in (X, \sigma).

Therefore, if (X, σ) is compact and Hausdorff, then (X, τ) is not compact.

continued ..

(3) Define A = {x ∈ R2: both coordinates of x are rational}

B= { x e R2: at least one coordinate of x is rationals.

Show that R2 A is connected and R2 B is not connected.

Pf: First we will show that IR2 \ A is connected.

Let (x,y), (w, t) ∈ 132 \ A.

Then either x or y is irrational and either wor z is irrational. WLOG, suppose x is irrational.

We WTS I a path from (x, y) to (w, z) that avoids A.

Since x is irrational, there exists alpath from (x,y) to (x,u)

Where u is irrational.

If wis irrational, then there exists a path from (x,u) to (w,u) and then from (w,u) to (w,z).

If 2 is irrational, then there exists a straight line a straight line path (x,z) and then from (x,z) to (w,z).

Therefore, we can construct a path between any two points in R2 A. Thus, R2 A is path-connected => connected.

Now we will show that R2 B is not connected.

Observe that

R2\B= {(x,y) & 1R2\B: x < 0} U {(x,y) & 1R2\B: x > 0}

We can do this ble the points in 12/18 are of the form) (irrational, irrational) and 0 is not irrational.

Notice that the two sets are nonempty, open, and disjoint. Therefore, this is a separation of R2 B.

Thus, R2 | B is not connected.

* For (a), suffices to show path from (x,y) to (1,77).

Rued.

4) Let X be a topological space and $f,g:X\to S^2$ two continuous maps. Show that if for every $x\in X$ the points f(x) and g(x) on S^2 are not antipodal to each other, then f and g are homotopic.

Pf: Suppose that for every x eX the points f(x) and g(x) on S2 are not

antipodal to each other, meaning f(x) 7-g(x).

Let H: [0,1] x X
$$\rightarrow$$
 S² be defined by H(t,x) = $\frac{(1-t)f(x)++g(x)}{\|(1-t)f(x)+tg(x)\|}$

Observe that H is continuous because we are taking the sum and product of continuous functions.

First we will show that H is well-defined (i.e., $(1-t)f(x) + tg(x) \neq 0$): $(1-t)f(x) + tg(x) = 0 \Rightarrow (1-t)f(x) = -tg(x)$

$$||(1-t)f(x)|| = ||-tg(x)||$$
 because $||f(x)|| = 1$

$$||(1-t)|| = ||-t||$$

$$||-t| = t$$

$$||-t| = t$$

$$||-t| = t$$

$$||-t| = t$$

So
$$(1-\frac{1}{2})f(x) = -\frac{1}{2}g(x) \Rightarrow \frac{1}{2}f(x) = -\frac{1}{2}g(x)$$

 $\Rightarrow f(x) = -g(x)$ 2

This cannot happen blc f(x) and g(x) are not antipodal to each other. Therefore, $(1-t)f(x)+tg(x)\neq 0$, so H is well-defined.

Now we will show that H is a homotopy:

$$H(0, x) = \frac{(1-0)f(x) + 0.g(x)}{\|(1-0)f(x) + 0.g(x)\|} = \frac{f(x)}{\|f(x)\|} = f(x)$$

$$H(1, x) = \frac{(1-1)f(x)+1\cdot g(x)}{\|(1-1)f(x)+1\cdot g(x)\|} = \frac{g(x)}{\|g(x)\|} = g(x).$$

Therefore, His a homotopy.

Thus, f and g are homotopic.

Continued ..

(5) Compute the fundamental groups of the following spaces:

(a) The torus T2 = S' x S'.

 $\underline{Pf}: \ \pi_1\left(\mathbb{T}^2\right) = \pi_1\left(S' \times S'\right) = \pi_1\left(S'\right) \times \pi_1\left(S'\right) = \mathbb{Z} \times \mathbb{Z}.$ The fundamental group of a torus is ZXZ.

(b) The pinched torus S'x S'/S'x [1].

Pf: Let X = S' x S' / S' x {1}.

Here is a construction of the pinched torus:

This is S2 with two points (N and -N) identified together.

X is homeo. the shere with two points identified.

So
$$\pi_{1}(X) = \pi_{1}(S' \times S'/S' \times \{i\}) = \pi_{1}(S^{2} \vee S')$$

$$= \pi_{1}(S^{2}) * \pi_{1}(S')$$

$$= 0 * \mathbb{Z}$$

$$= \mathbb{Z}.$$

The fundamental group of the pinched torus is Z.

= A def. ret. = S2 w/ the = 52 V S' def. ret. Let poles identified by sliding the by collapsing the two endpoints extra are to a pt of the are to the same pt.

@ Assume p: X→X is a covening and both X and X are path-connected. Assume A is a path-connected subset of X so that ix: TI (A, a) - TI (X, a) is onto, for some a ∈ A, where i: A → X is the inclusion map. Prove that p-1(A) is path-connected as well.

Pf: Let x, y & p - (A) be arbitrary points. Since p-1(A) is the complete preimage of a subspace of X under p, we know that the restriction p. p-1(A) - A is a covering map.

Let A:= p-1(A).

· Since X is path-conn., we know there is a path f:[0,1] - X from X to y. It is obvious that pof is a path in X from p(x) to p(y).

Let a EA be as in the problem statement.

By path-connectedness of A, we can find paths d, B in A with

 $\alpha(0) = \alpha = \beta(1)$ and $\alpha(1) = \rho(x)$ and $\beta(0) = \rho(y)$.

Then the product a. (pof). B is a loop in X at a. Since the map ix from the problem statement is surjective, there exists a loop $\varphi: [0,1] \to A$ with $[\varphi] = [\alpha \cdot (\rho \circ f) \cdot \beta]$ (these equivalence classes are in the sense of of T, (X, a).).

· Now we will exploit the lifting properties of covening spaces.

Let & be a lift of a to a path in A with a(1) = x (remarking that $x \in p^{-1}(p(x))).$

Let w = Z(0). Let \(\beta \) be a lift of \(\beta \) to a path in A with \(\beta(0) = y \).

Let z := \$(1). To summante, & is a path from w to x and \$ is a path from y to 2.

We can also define liftings (in terms of $p: \widetilde{X} \to X$) of α, β to paths

in X beginning at w and y, respectively.

But since we can view the already defined a and B as paths in X, uniqueness of path liftings gives us that these "new" lifts are exactly Z and B. In other words, we obtain the same paths whether we lift in the sense of p or in the sense of the restriction of p to p-1(A). Because q is a loop in X, it lifts to a path q in X with poq = q and $\tilde{\varphi}(0) = \omega$. In much the same way as with the lifts of α and β , we

can see that \$\tilde{q}\$ is a path in \$\tilde{A}\$.

Since path homotopies also lift to covening spaces, there is a path

This establishes that $\tilde{\varphi}(1) = z$.

Finally, notice that $\tilde{z} \cdot \tilde{\varphi} \cdot \tilde{\beta}$ is a path from x to y that is contained entirely in $\tilde{A} = P'(A)$.

It follows that p-(A) is path-connected.