Topotogy Midterm 2

1 True/False.

(a) The connected sum M # N of two connected 2-dimensional manifolds M and N satisfies $\Pi_1(M \# N) = \Pi_1(M) * \Pi_1(N)$.

Pf: False. (It would be true for n-dim manifolds, where n = 3).

Counter-example: let M=N=RP2.

We have that $\mathbb{RP}^2 \# \mathbb{RP}^2 = K$, where K is the klein bottle. Then $\pi_1(\mathbb{RP}^2 \# \mathbb{RP}^2) = \pi_1(\mathbb{RP}^2) * \pi_1(\mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$, whereas $\pi_1(K) = \mathbb{Z} \times \mathbb{Z}$, which has no element of order 2, so it is not isomorphic to $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$.

(b) There is a covering map from the torus $\Pi^2 = S' \times S'$ to the klein bottle.

Pf: Observe that if we take a torus and draw a line in the middle as follows, we have two klein bottles.

(True)

(d) Let \widetilde{X} be a compact space, let X be a path-connected space, and let $\rho: \widetilde{X} \to X$ be a covering map. Given any $x \in X$ and $\widetilde{X} \in \rho^{-1}(X)$, the number $\# \rho^{-1}(X)$ of Sheets covering must be equal to the index $[\pi,(X,X):\rho_*(\pi,(\widetilde{X},\widetilde{X}))]$ of the Subgroup $\rho_*(\pi,(\widetilde{X},\widetilde{X}))$.

Pf: False, because X need not be path-connected.

Counter-example: Let $X = S^2$ and $\widetilde{X} = S^2 \times Y$, where Y is the set $\{0,1\}$ equipped with the discrete topology. (We can think of \widetilde{X} as the disjoint union of two spheres).

Then the projection map $p: X \to X$ given by $(X,i) \mapsto X$ is a covering map, but the cardinality of each fiber is 2, and since $\pi_i(X)$ is trivial, the index of the subgroup is 1.

continued ...

(e) Let X be RIP2 with one point removed. Then, TI, (X) = Z, where "="
Stands for the group isomorphism.

Pf: True.

$$\pi_i(X) = \pi_i(S^i) = \mathbb{Z}$$
.

(c) Let $f: S^2 \to S^2$ be a continuous map such that $f(w) \neq -w$ for any $w \in S^2$. Then, the map f must be homotopic to the identity map on S^2 .

Pf: True.

Let
$$id_{S^2}: S^2 \rightarrow S^2$$
 given by $id_{S^2}(w) = w$.
Let $H: [0,1] \times S^2 \rightarrow S^2$ be given by $H(t, w) = (1-t)f(w) + t \cdot id_{S^2}(w)$
 $||(1-t)f(w)| + t \cdot id_{S^2}(w)||$

Observe that H is cts since it's the product and sum of cts. fns. First we will show that H is well-defined, i.e., (1-1)f(w)+tids2(w) = 0:

$$(1-t)f(\omega) + t \cdot id_{S^2}(\omega) = 0 \Rightarrow (1-t)f(\omega) = -t \cdot id_{S^2}(\omega)$$

$$||(1-t)f(\omega)|| = ||-t \cdot id_{S^2}(\omega)||$$
Since $||f(\omega)|| = 1$

$$||(1-t)|| = ||-t||$$

$$||(1-t)|| = ||-t||$$

$$||(1-t)|| = ||-t||$$

$$||(1-t)|| = ||-t||$$

Plugging in
$$t=\frac{1}{2}$$
, we get: $(1-\frac{1}{2})f(\omega) = -\frac{1}{2}id_{S^2}(\omega)$

$$\frac{1}{2}f(\omega) = -\frac{1}{2}id_{S^2}(\omega)$$

$$f(\omega) = -id_{S^2}(\omega)$$

$$f(\omega) = -\omega,$$

which cannot happen since $f(\omega) \neq -\omega$ for any $\omega \in S^2$. Therefore, H is well-defined. Now we will check that H is a homotopy:

$$H(0, w) = (1-0)f(w) + 0 \cdot id_{S^2}(w) = f(w) = f(w), \text{ and}$$

$$\frac{||(1-0)f(w) + 0 \cdot id_{S^2}(w)||}{||f(w)||} = \frac{||f(w)||}{||f(w)||}$$

$$H(1, w) = (1-1)f(w) + 1 \cdot id_{S^2}(w) = id_{S^2}(w) = id_{S^2}(w) = w.$$

$$\frac{11(1-1)f(w) + 1 \cdot id_{S^2}(w)11}{11id_{S^2}(w)11} = id_{S^2}(w)11 = id_{S^2}(w)11 = w.$$

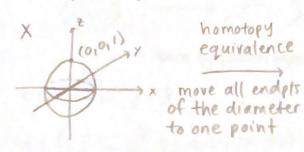
Therefore, His indeed a homotopy.

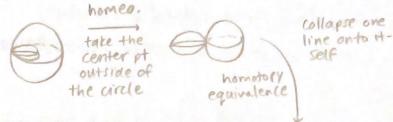
Thus, the map f must be homotopic to the identity map on 52.

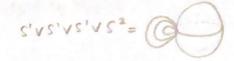
continued ...

2 Let $X \subset \mathbb{R}^3$ be the union of the unit sphere S^2 with the line segments $\{(X,y,0) \in \mathbb{R}^3, xy=0, x^2+y^2 \leq 1\}$. Compute $\pi_1(X,X_0)$ with $X_0=(0,0,1)$.

Pf: Since X is path-connected, the fund. gp. is independent of the base point up to isomorphism.







Each space S' and S² is locally Euclidean, so the wedge point has a nibbol in each space that deformation retracts to the wedge point. So using Van-Kampen, we can take the fund. gp. as follows:

$$\pi_{1}(X) = \pi_{1}(S' \vee S' \vee S' \vee S^{2})$$

$$= \pi_{1}(S') * \pi_{1}(S') * \pi_{1}(S') * \pi_{1}(S^{2})$$

$$= \mathbb{Z} * \mathbb{Z} * \mathbb{Z} * 0$$

$$= \mathbb{Z} * \mathbb{Z} * \mathbb{Z}.$$

Therefore, $\Pi_1(X) = \mathbb{Z} * \mathbb{Z} * \mathbb{Z}$.